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n Abstract

Expression of selected genes in hematopoietic stem cells has been identified as a regulator of differentiation of B cells in the liver and 
bone marrow. Moreover, naïve B cells expressing surface immunoglobulin need other types of genes for antigen-dependent development 
in secondary lymphoid organs. Many advanced molecular mechanisms underlying primary antibody deficiencies in humans have been 
described. We provide an overview of the mutations in genes known to be involved in B-cell development and their clinical consequences.
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Introduction

Primary antibody deficiencies are the most common type 
of primary immunodeficiencies, accounting for approximately 
half of all reported cases [1,2]. Primary antibody deficiencies 
comprise a heterogeneous group of disorders with low serum 
Ig titers and/or specific antibody deficiencies [3,4]. These 
deficiencies often arise as a result of defects in early B-cell 
development, class-switch recombination, or terminal B-cell 
differentiation [5,6].

B cells play a central role in the humoral immune response 
and are the precursors of plasma cells. B-cell development 
begins in bone marrow and continues in secondary lymphoid 
organs. Expression of different lineage-specific markers 
on B-cell precursors indicates different stages of B-cell 
development [7].

n Resumen

Se ha identificado la expresión de genes seleccionados en las células pluripotenciales de médula ósea como reguladores de la diferenciación 
de las células B en el hígado y en médula ósea. Sin embargo, las células B naïve que expresan inmunoglubulinas de superficie, necesitan 
otros tipos de genes para su desarrollo en los órganos linfoides secundarios dependienteS de antígeno. Se han descrito muchos mecanismos 
moleculares avanzados que subrayan las inmunodeficiencias en humanos y esta revisión constituye una visión general de la mutación en 
todos los genes conocidos involucrados en el desarrollo de las células B y sus consecuencias clínicas.
Palabras clave: Alteraciones genéticas. Desarrollo de las células B. Deficiencias de Ac primarias. Fenotipos clínicos.

Several genes are responsible for early B-cell development 
in bone marrow. These include Bruton tyrosine kinase (BTK), 
IGA, IGB, λ5, μ heavy chain, B-cell linker protein (BLNK), 
the p85a subunit of phosphoinositide 3-kinase (PIK3R1), and 
the E47 transcription factor. Mutations in genes involved in 
early B-cell development result in severe primary antibody 
deficiencies, which are characterized by blockade of B-cell 
differentiation before the production of surface Ig, markedly 
reduced mature B-cell counts in the peripheral circulation, 
profound hypogammaglobulinemia, and early onset of 
recurrent bacterial infections in affected children [8,9].

In secondary lymphoid organs, class-switch recombination 
(CSR) and somatic hypermutation (SHM) are the mechanisms 
necessary for the generation of effector plasma cells secreting 
high-affinity IgG, IgA, and IgE antibodies. The genes that 
play a key role in CSR and SHM are CD40 ligand (CD40L), 
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Although the disease was described more than 6 decades ago, 
mutations in the BTK gene were not identified until the early 
1990s [18,19]. Mutations in BTK (a member of the Tec family 
of kinases) in mice (Xid mouse) generate a phenotype similar 
to that of humans. This finding increased our understanding of 
the pathogenic mechanisms of B-cell defects in XLA, although 
a less severe B-cell defect was observed in Xid, probably owing 
to expression of a second BTK-like kinase (Tec) in murine 
pre–B cells [12,20].

Autosomal Agammaglobulinemia Genes

Other genetic defects leading to agammaglobulinemia are 
inherited in an autosomal recessive manner. Nevertheless, 
the abovementioned genes remain intact in some patients 
with agammaglobulinemia, and the underlying gene defect 
should subsequently be identified [21-27]. In patients, with 
arrested early B-cell development, peripheral blood B cells 
usually account for less than 1%-2% of the total, and very low 
levels of all Ig classes are detected [8]. Subsequently, patients 
experience a variety of manifestations, mainly recurrent 
bacterial infections in the respiratory and gastrointestinal tracts 
(eg, recurrent otitis media, sinusitis, pneumonia, and diarrhea). 
In addition to bacterial and enteroviral infections, arthritis, and 
neutropenia can also be seen in up to 20% of patients [8,28,29]. 
Immunoglobulin replacement therapy is the treatment of choice 
in affected patients [30]. 

CD40, inhibitor of kappa light polypeptide gene enhancer in 
B cells, kinase gamma (IKBKG), activation-induced cytidine 
deaminase (AID), and uracil N glycosylase (UNG). Defects in 
CSR are characterized by low serum levels of IgG, IgA, and 
IgE leading to recurrent bacterial infections with normal or 
elevated serum IgM levels [10]. 

The terminal stages of B-cell development are controlled 
by different genetic signatures including TNF receptor 
superfamily members (TACI, BAFF-R, and, potentially, 
TWEAK), MutS protein homolog 5 (MSH5), CD19–B-cell 
receptor (BCR) complex (CD19, CD21, and CD81) and the 
B-cell differentiation antigen, CD20 [11].

Genes Involved in Early B-Cell 
Development 

B cells develop from a lymphoid precursor in bone marrow. 
Further B-cell development follows several steps, from pro–B 
cells (TdT+ cells expressing CD34 and CD19) to pre–B cells 
(TdT–, CD34–, CD19+, and cytoplasmic μ+) and movement 
of matured B cells from bone marrow to peripheral blood 
[12,13]. Maturation of B cells involves a series of events, 
including commitment of progenitor cells to the B-cell 
lineage, proliferation of progenitor cells, rearrangement of 
antigen receptor genes, expression of cell surface markers, 
responses to extracellular signaling and selection events, and 
differentiation of B cells into functionally and phenotypically 
distinct subpopulations [8,14,15].

Pro–B cells comprise the earliest progenitor group 
committed to the B-cell lineage. Rag proteins seem to be 
expressed at this stage, and these could promote Ig gene 
recombination at the heavy chain locus. Consequently, the 
cells are differentiated into pre–B cells, which express the 
Igµ heavy chain on the cell surface, but their light chain locus 
has yet to be rearranged [12]. Expression of pre-BCR, which 
involves complexes of the µ heavy chain, heterodimeric 
surrogate light chains (SLC) containing λ5 and VpreB, and 
the signal-transducing proteins Igα and Igβ, is considered 
the first checkpoint in B-cell maturation. Several signaling 
molecules are involved in expression of pre-BCR and BCR 
and play a key role in transition of pro–B cells to the pre–B-
cell stage [12]. 

BTK (AGMX1, ATK, BPK, IMD1, and PSCTK1)

BTK, which is activated downstream of the pre-BCR, is 
located on chromosome Xq22.1 (Figure 1). BTK plays an 
important role in transducing signals from the BCR that can 
mediate proliferation and maturation at the pre–B-cell stage 
[8,12]. Mutations in the gene lead to maturational arrest of 
B-cell development at this stage; therefore, a decreased B-cell 
count and agammaglobulinemia are expected in affected 
individuals [16]. 

BTK deficiency (also known as X-linked agammaglobulinemia 
[XLA]), in which B-cell development is arrested at the pro–B-
cell to pre–B-cell stage, was the first primary immunodeficiency 
disease described by Bruton in 1952 [17]. During the last 10 
years, a number of genetic mutations responsible for autosomal 
recessive forms of agammaglobulinemia have been discovered. 

Figure 1. Chromosomal mapping of genes involved in early B-cell 
development (orange), class switching recombination (red), and terminal 
cell development (blue).
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BCR and BCR components in order to enable progression 
of the downstream signaling cascade for enhancement of 
V-to-DJ rearrangement [46]. It is assumed that expression 
of this complex, as part of the complete pre-BCR, is 
necessary for B-cell differentiation in humans; however, 
Iga and Igb have different roles in this regard [47,48]. 
Iga can be expressed on the cell surface in the absence of 
Igb because of the single polarity of the transmembrane 
domain, thus enabling expression of Iga homodimers. 
Moreover, it has been suggested that the immunoreceptor 
tyrosine-based activation motif (ITAM) of Iga has unique 
binding partners that allow it to display functions that are 
not shared with Igb [26]. Therefore, mutations in Iga, but 
not Igb, affect V-to-DJ rearrangement. Furthermore, Iga 
has 2 separate functions, including chaperoning (escorting 
the transmembrane domain of the μ heavy chain to the cell 
surface) and signaling (ITAMs in the cytoplasmic domain). 
The former function is also observed with the cytoplasmic 
domains of Igb [49].  

Complete block in human B-cell development due to Iga 
deficiency was reported in 1999 in patients with autosomal 
recessive inheritance [50]. The patients had chronic diarrhea 
and malabsorption leading to failure to thrive. Normal or 
elevated numbers of CD34+ and CD19+ pro–B cells in bone 
marrow and neutropenia in peripheral blood are frequent in 
these cases. Pre–B cells (about 30% of normal) and splenic B 
cells (about 5% of normal) may be present in these patients 
[26]. Recently, a mutation in CD79b was reported to result in 
arrest of early B-cell development and autosomal recessive 
agammaglobulinemia [51].

BLNK (AGM4, BASH, LY57, SLP-65, SLP65, bca)

The gene responsible for production of the B-cell linker 
protein (BLNK) is located on 10q24.1. The adaptor protein 
BLNK is expressed in B-cell and myeloid lineages (with 
30% homology in all regions up to SLP-76) [52]. After BCR 
cross-linking via CMTM7, BLNK is phosphorylated by Syk 
to assemble essential components of the signaling pathways 
needed for B-cell development [53,54]. However, BLNK is 
not necessary for the differentiation of pro–B cells to pre–B 
cells. This molecule is required for capping of BCR, activation 
of ERK connected with H-Ras, and phosphorylation of 
phospholipase C gamma 2 and calcium influx after stimulation 
of BCR [55,56]. BLNK has 2 splice variants; these differ in 
the midportion of the molecule, which contains a proline-rich 
region [57]. 

Mutations in BLNK were first reported in 1999. The 
patient had undetectable serum Ig levels and less than 0.01% 
B cells in the peripheral circulation. In addition, the clinical 
consequences of this finding were more severe than in XLA 
patients [24,58]. Transcripts for a rearranged μ heavy chain 
have been detected in the bone marrow of BLNK-deficient 
patients [59].

PIK3R1 (GRB1, p85, p85-ALPHA)

Phosphatidylinositol 3-kinase regulatory subunit alpha 
is an 85-kDa regulatory subunit enzyme. In humans, it is 
produced by the PIK3R1 gene, which is located on 5q13.1 

µ heavy chain (IGHM, neAGM1, MU, VH)

The IGHM gene is located on the long arm of chromosome 
14 at position 14q32.33. The Ig heavy µ chain is a product 
of this gene (with 4 domains: CH1, CH2, CH3, and CH4). 
IgM could initially copresent with SLC in large pre–B cells. 
However, in small precursor pre–B cells and immature B cells, 
this molecule is associated with κ and λ light chains, which 
bind antigens [31] and subsequently lead to antigen uptake 
into clathrin-coated vesicles [32].

Signaling defects in IgM have been reported in females 
with consanguineous parents, who show a similar phenotype to 
that of patients with XLA because of the role of this molecule 
in the same pathway as the BCR [33,34]. Most patients have 
splice site defects leading to lack of expression of the μ heavy 
chain on the B-cell surface. Some authors indicate more severe 
clinical and laboratory manifestations, earlier onset of disease, 
and a lower B-cell count in the peripheral circulation of patients 
with µ heavy chain disease than in those with XLA [35-37]. 
Although IgM is not detected in most patients at the time of 
diagnosis, cases with measurable levels of IgM should not be 
excluded for a possible diagnosis of μ heavy chain defects. 
Normal percentages of pro–B cells, and no pre–B cells or B 
cells could suggest laboratory examination for signal-incapable 
mutants of μ heavy chain patients [38,39].

l5 (IGLL1, AGM2, CD179b, IGL5, IGLJ14.1, IGO, 
VPREB2) and VpreB (IGI, IGVPB, VPREB1, CD179a)

The IGLL1 and IGI genes are located on the long arm of 
chromosome 22 (22q11.23 and 11.22, respectively). IGLL1 
encodes the l5 protein, which together with the product of a 
second gene (VpreB), forms the SLC [40]. The final product 
of this recombination is needed for transport of μ heavy chains 
to the pro–B-cell membrane [41]. The C-terminus of λ5 is 
similar to the J region and constant region sequences. Despite 
the presence of VpreB, λ5 is capable of folding and assembling 
the 2 proteins via its homology with the J region [42].

Humans have 3 genes for λ5 and only 1 gene for VpreB; 
however, 2 of the λ5 genes lack a promoter and the first exon 
and are thus considered pseudogenes. Since 1998, when λ5 
deficiency was first described in humans, several cases of 
the same gene defect have been reported [25]. The main 
difference between patients with homozygous λ5 mutations 
and patients with XLA is the higher degree of maturity in 
the phenotype of B cells and decreased VpreB expression in 
intracytoplasmic staining of B cells in the bone marrow of 
patients with XLA. The pronounced severity in the clinical 
presentation of λ5-deficient patients may be due to the 
absence of or reduced light chain rearrangements [43,44]. 
Moreover, compound heterozygous variations in the VpreB1 
gene were reported in 2 unrelated patients and may have a 
role in disease etiology [45].

Iga (CD79A, CD79A, IGA) and Igb (CD79B, AGM6, 
B29, IGB)

Both CD79A and CD79B (located on 19q13.2 
and 17q23.3, respectively) products contribute to 
the transmembrane signal transduction module. The 
heterodimeric Iga/Igb complex is covalently linked to pre-
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[60]. Although the extracellular signal for PI3K pathway 
activation is not clear in humans, defects in the chemokine 
CXCR4 in mice mimic manifestations of PIK3R1 deficiency 
in humans [61]. 

Mutations in PIK3R1 have been implicated in patients 
with breast cancer [62], although in 2012, Conley et al [63] 
reported the case of a female with a homozygous premature 
stop codon in the catalytic subunit (p110d) who presented 
with an isolated defect in the development of pro–B cells 
and transient neutropenia without some of the features 
demonstrated in a CXCR5 knockout mouse model (eg, 
hypersensitivity to insulin, defective platelet function, and 
abnormal mast-cell development). Early onset of infections 
and multiple complications, including colitis, were also 
recorded.

Class-Switch Recombination Genes

Immunoglobulin CSR is central to the humoral immune 
response [64]. Hyper-IgM (HIGM) syndromes are a group of 
primary immunodeficiencies in which defective Ig-CSR leads 
to deficiency of IgG, IgA, and IgE with normal or elevated 
levels of IgM [65,66]. Several different gene products are 
involved in the Ig-CSR process, and defects in some these 
products have been described in patients with HIGM syndrome 
(Figure 2) [67]. 

Most, but not all, patients with Ig-CSR defects also have 
defects in the related process of SHM. These genetic disorders 
can be classified into defects restricted to B cells and defects 
that also affect the functions of other cells, including T cells 
and monocytes/macrophages, whose function requires integrity 
of the CD40 signaling pathway. The former group cause pure 
humoral immunodeficiency, while the latter are susceptible to 
opportunistic infections as a result of additional derangement 
of cell-mediated immunity [66,68,69].

HIGM Syndrome as Part of Combined 
Immunodeficiency

CD40 is a 48-kD transmembrane glycoprotein surface 
receptor that is a member of the tumor necrosis factor receptor 
superfamily (TNFRSF) proteins [70]. Close cooperation 
between T cells and B cells involving CD40, which is 
constitutively expressed on B cells, and CD40 ligand (CD40L 
or CD154), which is transiently expressed on activated helper 
T cells, is required for B-cell proliferation, germinal center 
formation, CSR, and SHM [71-73]. 

Defects of signaling through the CD40 receptor affect not 
only B-cell function, but also macrophages/monocytes and 
dendritic cells. Lack of appropriate signaling in the latter results 
in impaired handling of opportunistic pathogens [68,70]. 

CD40L (CD154, HIGM1, IGM, IMD3, T-BAM, TNFSF5, 
TRAP, gp39, hCD40L) 

The most common and best-recognized form of HIGM 
syndrome is caused by mutations in the gene encoding CD40L 
located on Xq26.3 [74-78]. CD40L, a member of the TNF 
family, is expressed in trimeric form on the cell surface and 
comprises a CD40 binding domain on the cell surface, a short 
transmembrane domain, and a cytoplasmic tail. Expression of 
the molecule is tightly regulated, occurring only transiently 
upon activation of T cells [79]. 

The CD40/CD40L axis is central to T-cell–dependent 
antibody responses. In response to cross-linking of CD40 by 
CD40L, B cells undergo clonal expansion, germinal center 
formation, CSR, SHM, and generation of long-lived plasma 
cells [80].

Signaling through the CD40 pathway involves the 
recruitment of adaptor proteins, TNF receptor–associated 
factors (TRAFs), and activity of cytoplasmic kinases such 
as IkB kinase (IKK) and mitogen-activated protein kinase 
(MAPK) [81,82].

About half of all patients have IgM levels within the normal 
range; the remainder have elevated levels at presentation 
[83]. There is no response to protein antigens, and memory 
B cells are either absent or present in much reduced numbers 
[84,85]. While primary follicles are present in the lymph nodes, 
germinal centers are characteristically absent or abortive [65]. 
Humoral immunodeficiency results in susceptibility to bacterial 
infections, particularly those affecting the respiratory tract. 
However, affected patients also succumb to opportunistic 
infections such as Pneumocystis jiroveci pneumonia and 
Cryptosporidium parvum diarrhea, suggesting compromised 
T-cell effector functions [86,87].

Interaction of activated CD4 cells expressing CD40L with 
CD40 expressing monocytes/macrophages normally potentiates 
the production of type 1 helper T cell (TH1) cytokines, IL-12 
and IFN-g, which are important in the handling of opportunistic 
intracellular pathogens [83,86,88,89].

Severe liver/biliary tract disease, increased occurrence of 
gastrointestinal tumors, and neutropenia are also hallmarks of 
the disease [65,83].

Clinical management is based on regular administration 
of immunoglobulin and antibiotic prophylaxis; however, bone 
marrow transplantation from matched related or unrelated 
donors is the treatment of choice [90,91]. 

Figure 2. Cytoplasmic and membrane molecules encoded by genes 
involved in B-cell development
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complications include immune cytopenia, hepatitis, and 
arthritis and affect about 20% of patients [104,106]. 

Development of ectopic lymphoid tissues in nonlymphoid 
organs probably predisposes to organ-specific autoimmunity 
[107]. Genotype/phenotype correlation has been detected in 
AID deficiency; patients who carry mutations located in the 
C-terminal domain of AID have preserved SHM and do not 
present lymphoid hyperplasia [108], thus suggesting a direct 
role for SHM in the control of B-cell proliferation inside the 
germinal centers [109].

An autosomal dominant form of AID deficiency has also 
been described and is caused by a mutation in the C-terminal 
domain of the molecule. This mutation results in defective 
CSR while leaving SHM unaffected [110,111].

UNG (DGU, HIGM4, HIGM5, UDG)

Uracil N glycosylase (UNG) deficiency has also been 
reported to cause HIGM syndrome [112]. This protein is 
encoded by the UNG gene and is located on 12q24.11. It is a 
DNA-repair enzyme that removes uracil from DNA after AID 
deaminates cytosine to uracil. Patients with mutations have a 
similar clinical picture to that of patients with AID deficiency. 
CSR is severely impaired, unlike SHM, which is only partially 
impaired [109]. 

Since UNG is also involved in the repair of spontaneously 
occurring base lesions, it has an antimutagenic function. UNG-
deficient mice develop B-cell lymphomas over time [113]. 
There is thus a potential risk of development of lymphoma in 
UNG-deficient patients in adulthood [66].

PMS2 (HNPCC4, PMS2CL, PMSL2)

Postmeiotic segregation increased 2 (PMS2) is a protein 
involved in DNA mismatch repair [114] that is encoded by 
the PMS2 gene, located on 7p22.1. Deficiency in PMS2 
can lead to Ig-CSR defects [115]. A partial immunological 
phenotype of HIGM with low serum IgG is associated with 
low IgA, which can be corrected over time, probably because 
of the accumulation of long-lived plasma cells [69]. B cells 
are unable to undergo CSR following activation with CD40L 
and appropriate cytokines. SHM is normal, but the peripheral 
blood memory B-cell count is low. Humoral deficiency may 
remain the main symptom for several years. However, the 
major characteristic of PMS2 deficiency is the occurrence of 
gastrointestinal cancer (adenomas) during childhood.

Genes Involved in Terminal B-cell 
Development 

Terminal B cells develop in the secondary lymphoid 
organs, where naïve B cells are converted to secretory 
plasma cells [116,117]. Defects in this process comprise a 
heterogeneous group of predominantly antibody deficiencies 
characterized by recurrent multiorgan infection and specific 
antibody deficiency [118-120]. Patients with common variable 
immunodeficiency (CVID) form the second largest cohort of 
primary immunodeficiency patients numerically and constitute 
an elusive group with a largely unknown genetic etiology [121]. 
CVID patients with early onset of hypogammaglobulinemia 

CD40 (Bp50, CDW40, TNFRSF5, p50)

Patients affected by CD40 deficiency are clinically and 
immunologically indistinguishable from those carrying genetic 
defects in the CD40L gene, except for their autosomal recessive 
mode of inheritance [92]. The mutations in the CD40 gene 
located on 20q13.12 lead to a lack of surface expression of 
CD40 on B cells, macrophages, and dendritic cells. Patients 
usually have small tonsils and lymph nodes and present with 
a humoral defect and a propensity for opportunistic infections 
[93].

IKBKG (H2TF1, LYT-10, LYT10, NF-kB2, p105, p52)

Another X-linked form of HIGM is NF-κB essential 
modulator (NEMO) syndrome, which is characterized by 
the association of hypogammaglobulinemia with ectodermal 
dysplasia [94-96]. This condition is caused by hypomorphic 
mutations of the IKBKG gene encoding the inhibitor of NF-κB 
kinase subunit gamma (IKKγ), which is located on Xq28, a 
part of the kinase complex involved in releasing NF-κB from 
its association with the inhibitory complex IκB, thus allowing 
its translocation to the nucleus [94,96]. 

Null mutations in the same gene are lethal in males and 
cause incontinentia pigmenti in carrier females [97,98]. 
Ectodermic dysplasia is a consequence of downstream 
signaling impairment of the ectodysplasin receptor, whose 
signaling pathway is also dependent on NF-κB [65]. 

As noted earlier, signaling through CD40 on B cells 
involves NF-κB. Nonetheless, as NF-κB is involved in a 
number of T-cell, natural killer cell and Toll-receptor signaling 
pathways, immunodeficiency is broader than simply a humoral 
defect. Patients therefore experience not only bacterial 
infections, but also mycobacterial and opportunistic infections 
[99].  

Defects of B-cell Intrinsic Ig-CSR 

HIGM syndrome with pure humoral immunodeficiency 
and no susceptibility to opportunistic infections is caused 
by intrinsic B-cell defects in the mechanism of Ig-CSR. 
Historically, the expression of CD40L and activation of T cells 
have been reported to be normal in affected patients. However, 
B cells do not undergo CSR in vitro in the presence of CD40L 
or CD40 agonists [100-102].

AID (ACIDA, ARP2, CDA2, HIGM2)

Deficiency of activation-induced cytidine deaminase 
(AID) is the second most common genetic cause of HIGM 
syndrome [103].

AID is selectively expressed in germinal center B cells and 
is responsible for deaminating cytidine into uracil residues in 
the early phases of CSR and SHM. Mutations in AID (located on 
12p13.31) cause an autosomal recessive syndrome of humoral 
deficiency characterized by markedly elevated serum levels 
of IgM, defective CSR and SHM, and massive lymph node 
hyperplasia. Memory B cells are present in normal numbers 
[104]. Patients usually present with recurrent respiratory 
infections due to pyogenic bacteria such as Streptococcus 
pneumoniae, Haemophilus influenzae, and Staphylococcus 
aureus during the first 2 years of life [105]. Autoimmune 



Genetic Defects of B-Cell Development

J Investig Allergol Clin Immunol 2014; Vol. 24(1): 6-22© 2014 Esmon Publicidad

11

and parental consanguinity sometimes have an affected 
relative (10-20%), whose disease is autosomal recessive [122]. 
Members with SIgAD and/or IgG subclass deficiency are also 
seen in this type of family [123]. Clinical and immunological 
classifications have been proposed in order to facilitate 
identification of a homogeneous subgroup of patients for 
evaluation of rare genetic disorders [124]. Although genes 
identified over the past 10 years (including TACI, ICOS, 
BAFFR, CD81, CD20, CD19, and CD21) are found in less 
than 10% of patients, they have nevertheless increased our 
awareness of novel mechanisms underlying defects in terminal 
B-cell development [125]. The clinical and immunological 
characteristics of patients with mutations in these genes are 
shown in the Table.

Genes Thought to Cause Monogenetic Mendelian 
Traits in CVID

ICOS (AILIM, CD278, CVID1)  

The ICOS gene is located at 2q33.2 [126]. The product of this 
gene is the inducible T-cell costimulator, which belongs to the 
CD28 and CTLA-4 Ig-like costimulatory receptor family [127]. 
This molecule is expressed on activated TH2 cells in homodimeric 
form and binds to ICOS ligand (ICOS-L), which is constitutively 
expressed on naive B cells and involved in signaling pathways 
related to T-dependent antibody responses [128].

Experimental studies have shown that ICOS protein is 
involved in the regulation of T-cell proliferation (secretion 
of IL-2, TNF-α, and IFN-γ) and humoral immune responses 

Table. Clinical and Immunological Characteristics of Genes Involved in B-Cell Developmenta

Disease Percentage B Cells Ig Levels SAD Memory Inheritance Other 
  of Patients    B Cells

Early B-cell defects       
 BTK 85% ↓ ↓ ↓ ↓ XL 
 µ Heavy chain 5% ↓ ↓ ↓ ↓ AR 
 λ5 0.5% ↓ ↓ ↓ ↓ AR 
 Igα <1% ↓ ↓ ↓ ↓ AR 
 Igβ <0.5% ↓ ↓ ↓ ↓ AR 
 BLNK <1% ↓ ↓ ↓ ↓ AR 
 PI3KR1 <0.5% ↓ ↓ ↓ ↓ AR 
Class-switching defects       
 CD40L 70% NL ↑M, ↓G, A, E ↓TD ↓ XL T-cell defect, SHM defect, liver  
        disease,
 CD40 <2% NL ↑M, ↓G, A, E ↓TD ↓ AR T-cell defect, SHM defect, liver  
        disease,
 NEMO <2% NL ↑M, ↓G, A, E ↓ ↓ XL/AD Lymphadenopathy, ectodermal  
        dysplasia, SHM defect
 AID 20% NL ↑M, ↓G, A, E ↓ NL AR Lymphadenopathy, SHM defect
 AID C terminal  NL ↑M, ↓G, A, E ↓ NL AD Lymphadenopathy, DNA cleavage
 UNG <2% NL ↑M, ↓G, A, E ↓ NL AR Lymphadenopathy, lymphoma  
        without autoimmunity
 PMS2       
Terminal B-cell defects        
 ICOS <1% NL ↓ ↓ - AR Autoimmunity (ITP, AIHA)
 CD19 <1% NL ↓ ↓ - AR Autoimmunity (ITP, AIHA)
 CD81 <0.5% NL ↓G ↓ ↓ AR 
 CD20 <0.5% NL ↓G ↓TI ↓ AR Impaired calcium response
 CD21 <0.5% NL ↓ ↓ ? AR 
 LRBA <0.5% NL ↓ ↓ ↓ AR Autoimmunity, enteropathy
 TACI 10% NL ↓ ↓TI - - Autoimmunity (SLE) and allergic  
        rhinitis
 BAFFR 1% ↓ ↓G,M ↓TI  ↓ - Elevated transitional B cells
 MSH5 <0.5% NL ↓ ↓ ? -

Abbreviations: AD, autosomal dominant; AIHA, autoimmune hemolytic anemia; AR, autosomal recessive; ITP, idiopathic thrombocytopenic purpura; NL, 
normal; SAD, specific antibody deficiency; SHM, somatic hypermutation; SLE, systemic lupus erythematosus; TD, T-cell–dependent antigens; TI, T-cell–
independent antigens; XL, X-linked.
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(secretion of IL-4, IL-5, IL-6) and is pivotal for superinduction 
of IL-10 [129]. The former mechanism may lead to dysregulation 
of terminal B-cell differentiation into memory and plasma cells. 
The number of circulating CXCR5-positive T cells, which are 
thought to be related to secretion of IL-12 and provide cognate 
help to B cells in germinal centers, was reduced in ICOS-
deficient patients [130,131]. Selective impairment of IL-17 
production was also observed in ICOS-deficient helper T cells 
stimulated by anti-CD3/anti-ICOS, which play a key role in the 
regulation of inflammatory processes in tissue [132].

Clinical ICOS deficiency was first reported in 2003 [133] 
in a patient with an autosomal recessive pattern. This case was 
followed by reports on 8 patients living along the River Danube 
who had a common ancestry owing to a founder mutation 
[134-138]. Major clinical features of ICOS deficiency include 
diminished Ig levels, autoimmunity, lymphocytic infiltration, 
malignancy, reduced class-switched and memory B-cell counts, 
and defective IgG1 and IgE antibody production in response to 
immunization, suggesting reduced germinal center formation 
[127,139,140]. Histopathology revealed severely aberrant 
and vestigial germinal centers in the patients’ lymph nodes 
[141,142].

CD19 (B4, CVID3)

The CD19 gene is located on the short arm of chromosome 
16 at 16p11.2. The product of this gene belongs to the BCR 
coreceptor family [143]. This cell surface molecule, which 
remains expressive until the plasma cell stage, stabilizes 
and assembles with the antigen receptor of B cells in order 
to decrease the threshold for antigen receptor–dependent 
stimulation [144-148]. CD19 has been shown to interact with 
CD81, CD82, VAV2, complement receptor 2 (CD21), and 
Leu-13 (CD225) to form the CD19 complex, which mediates 
regulation of B-cell development, activation, growth, and 
motility [149, 150]. Ligation and phosphorylation of the 
internal tail of CD19 by PI-3 kinase is followed by binding of 
Src-family kinases and antigen-dependent Ca2

+ signaling [151]. 
Furthermore, stabilization of the MYC oncoprotein associated 
with the development of B-cell lymphoma depends on CD19 
concentrations [146-148]. 

Human CD19 deficiency was first reported in 2006 and 
was shown to be involved an autosomal recessive inheritance 
pattern. Clinically, the disease resembled a CVID phenotype 
with early-onset hypogammaglobulinemia (low IgG and IgA 
and/or IgM), impaired memory B and CD5+ B-cell function, 
and autoimmune glomerulonephritis [152]. All 6 reported cases 
had normal B-cell counts, and the discrepancy between CD19 
and CD20 counts observed with flow cytometry in a patient 
with a CVID phenotype could have helped to diagnose these 
individuals. Vaccination responses both to polysaccharide and 
to peptide antigens are severely impaired in CD19 deficiency 
[153-155].

CD81 (S5.7, TAPA1, TSPAN28, CVID6)

The CD81 gene is located on the short arm of chromosome 
11 at 11p15.5. The product of this gene belongs to the 
transmembrane 4 superfamily [156]. This cell surface protein 
is the target of the antiproliferative antibody 1 (TAPA-1) and 

tetraspanin-28 (Tspan-28) proteins and interacts directly with 
the Ig superfamily member 8 (IGSF8, CD316), TSPAN4, CD9, 
PTGFRN, CD117, CD29, and CD36 [157, 158]. 

Signal transduction through CD81 in complex with CD19 
plays an important role in the fine-tuning and amplification 
of BCR signals after antigen binding in B cells [159]. CD81 
also associates with T-cell surface markers (CD4 and CD8) 
to generate a costimulatory CD3 signal [156]. In endothelial 
cells, the CD81 protein combines with integrins to facilitate 
muscle cell fusion and support myotube maintenance [160]. 
CD81 plays a critical role in susceptibility to viral infections 
including hepatitis C (attachment to the E1/E2 glycoproteins 
heterodimer) and human immunodeficiency virus infection 
(virion assembly and release by the gag protein) [161-163]. 

In 2010, CD81 deficiency was first described as an 
autosomal recessive Mendelian trait with clinical manifestations 
similar to those observed in CD19-deficient patients [149]. 
However, the patient with CD81 deficiency had normal serum 
IgA levels and multiple autoimmune diseases, including 
acute glomerulonephritis, Henoch–Schonlein purpura, and 
autoimmune thrombocytopenia [121,164].

CD21 (CR2, C3DR, CR, SLEB9, CVID7)

The CD21 gene is located on the long arm of chromosome 
1 at position 1q32.2. The complement component receptor 2 
binds to iC3b, C3dg, and C3d [165]. The presence of CR2 
receptors as coreceptors in CD19 complex on the surface 
of B cells enables activation and maturation of these cells 
by derivatives of the complement system, especially via the 
C3d-antigen complex [166,167]. CR2 is a gateway molecule 
for binding and entry of Epstein-Barr virus (EBV) into B cells 
and follicular dendritic cells [158,168]. 

Compound heterozygous mutations in CD21 were 
reported in 2012 [169]. The patient had late onset-
hypogammaglobulinemia, low numbers of class-switched 
memory B cells and a specific antibody deficiency, even after 
administration of the polysaccharide vaccine. A new subset 
of B cells (IgM+IgD+CD21low cells) has been reported to be 
prominent in a subgroup of CVID cases. This subset is large, 
overexpresses CD86, and is more susceptible to division in 
vivo with a high anergic status [170]. Because of a defective 
negative selection process in IgM+IgD+CD21low cells, the subset 
comprises autoreactive B cells associated with inadequate 
peripheral activation and limited activation through the calcium 
pathway [171].

CD20 (MS4A1, B1, Bp35, LEU-16, MS4A2, S7, CVID5)

The CD20 gene is located on the long arm of chromosome 
11 at position 11q12.2. The product of this gene is B-lymphocyte 
antigen CD20 [172]. This glycosylated phosphoprotein is 
a member of the membrane-spanning 4A family, which is 
expressed on the surface of all B cells and is first detected at the 
pro-B stage before progressively increasing in concentration 
until maturity [173]. Although this coreceptor has no clear 
natural ligand, it assumed that CD20 protein acts as a 
calcium-dependent channel. The function of CD20 protein 
is to enable optimal B-cell immune responses, specifically 
against T-independent antigens [174]. This marker is expressed 
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at all stages of B-cell development, except in pro–B cells, 
plasmablasts, and plasma cells [175].

The only patient with CD20 reported to date had a 
homozygous mutation at a splice site of the CD20 gene, 
resulting in abolished expression of mRNA and protein. The 
authors also observed reduced B-cell differentiation into 
plasma cells due to diminished calcium responses upon BCR 
triggering [176]. Furthermore, the number of class-switched 
memory B cells was reduced, and SHM was impaired. 
Surprisingly, the patient’s IgA and IgM serum levels rose 
during 5 years of follow-up; however, serum IgG levels 
and T-independent specific antibody responses remained 
consistently low. Altogether, CD20 deficiency should be 
considered in cohorts of IgG subclass–deficient patients with 
early onset of disease and sinopulmonary infections.

LRBA (BGL, CDC4L, LAB300, LBA, CVID8)

The LRBA gene is located on the long arm of chromosome 
4 at 4q31.3. In humans, it encodes the lipopolysaccharide-
responsive and beige-like anchor protein, which is a member 
of the BEACH-WD40 protein family [177]. LRBA interacts 
with signaling enzymes (PKA and PKC) with an A-kinase 
anchoring protein (AKAP) motif to compartmentalize these 
signaling molecules in organelles and membranes [178]. It 
has been suggested that LRBA plays a role in apoptosis, and 
increased apoptosis has been observed in LRBA-deficient, 
EBV-immortalized B-cell lines [179]. Phosphorylation of 
BAD, a key apoptosis regulator, was diminished in LRBA-
deficient cells (PKA reduced S112 phosphorylation) and was 
restored when the cells where reconstituted with wild-type 
LRBA [180].

To date, 11 autosomal recessive LRBA-deficient 
patients with childhood-onset humoral immune deficiency 
have been diagnosed using genetic linkage analysis in 
consanguineous families. Autoimmunity (especially idiopathic 
thrombocytopenic purpura), bronchiectasis due to lymphoid 
interstitial pneumonia, inflammatory bowel disease, growth 
retardation, and CNS granuloma formation are other associated 
complications in this disease, and all patients with LRBA 
deficiency showed reduced counts of switched memory B 
cells [178,181,182].

PLCG2 (FCAS3)

The PLCG2 gene, which is located on the long arm of 
chromosome 16 at 16q23.3, encodes 1-phosphatidyl-inositol-4, 
5-bisphosphate phosphodiesterase gamma-2 [183]. This 
enzyme interacts with PTPN11, LYN, BTK, SHC1, and 
GAB2 to mediate activation signaling, CSR, and receptor 
editing in B cells [184,185]. Autoinhibitory interaction with 
the cSH2 domain plays an important role in this process [186]. 
A mutant form of this enzyme shows enhanced activation at 
subphysiologic temperatures, especially in B cells and mast 
cells [187,188]. 

Thirteen cases from 27 patients with PLCG2-associated 
antibody deficiency and immune dysregulation had 
hypogammaglobulinemia accompanied by cold urticaria 
and pleiotropic immune dysregulation [189]. These patients 
also had recurrent infections because of antibody deficiency 

(except IgE serum levels) and impaired central tolerance [190]. 
Autoimmunity (50%) and granulomatous lesions (25%) are 
common features of patients with this disorder. Laboratory 
and immunologic investigation revealed diminished class-
switched memory B cells, impaired B-cell calcium flux, and 
low numbers of natural killer cells [56,191-193]. 

Genes Associated With CVID in Patients With 
Polygenic Traits

TACI (TNFRSF13B, CD267, TNFRSF14B, CVID2) 

TACI is a highly polymorphic gene located on the short arm 
of chromosome 17 at 17p11.2. It encodes the transmembrane 
activator and calcium-modulator and cyclophilin ligand 
interactor protein (the lymphocyte-specific member 13B of 
the tumor necrosis factor receptor superfamily) with high 
variability in amino acid substitutions [194]. TACI protein 
interacts with the calcium-modulator and cyclophilin ligand 
(CAML), the B-cell activating factor (BAFF), a proliferation-
inducing ligand (APRIL), and TWEPRIL [195]. 

Signaling through this protein activates several transcription 
factors in B cells via binding to TRAFs including calcineurin, 
NFAT, AP-1, and NF-kB [196]. Together with BAFF-R and the 
B-cell maturation antigen (BCMA), TACI protein constitutes 
a complex signaling network that modulates CSR and plasma 
cell formation and negatively regulates B-cell homeostasis 
[197]. This network has partly overlapping expression patterns 
and functions that might compensate each other within this 
redundant system [198].

TACI protein is also found on a subset of T cells. 
TLR ligands were recently found to act as a signaling 
regulator between the TACI protein and Toll-like receptor 
pathways. Production and activation of TACI depend 
strongly on stimulation of adaptor protein MyD88, which acts 
synergistically with APRIL and BAFF. TACI binds poorly, and 
its affinity is sometimes higher for BAFF and APRIL [199]. 
TACI is also highly expressed on human marginal zone B cells 
and switched memory B cells, although it is rare or absent 
on mature naive and transitional B cells [200]. Additional 
molecular studies will be required to determine exactly how 
TACI mutations affect the clinical phenotype of patients with 
predominantly antibody deficiency [201]. 

Since 2005, TACI deficiency has been reported in roughly 
10% of patients with CVID [202]. Complex patterns of 
inheritance (homozygous, heterozygous, and compound 
heterozygous), mostly in the hotspot extracellular portion of 
the molecule (C104R and A181E) and incomplete penetrance 
and phenotypic diversity in clinical manifestations of TACI-
deficient patients, suggest that modifying factors may play 
a role [196,203]. Observations of heterozygous TACI null 
mutations may suggest that such defects could exert their 
effects via haploinsufficiency rather than by being dominant-
negative proteins [204]. However, heterozygous C104R 
patients had a significant correlation with the CVID phenotype, 
with low numbers of IgD–CD27+ B cells, autoimmunity, 
and polylymphocytic infiltrations [205]. Therefore, TACI 
mutations (especially in carriers of single mutations) are 
not diagnostic of CVID or predictive of the development of 
this immune defect; TACI is only a disease susceptibility or 
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disease-associated gene. Indeed, individuals with monoallelic 
mutations are more likely to develop CVID and autoimmune 
phenomena, although no clear genotype–phenotype correlation 
has been established [206]. Screening for mutations in TACI 
to predict prognosis or help in genetic counseling is therefore 
unlikely to be useful [207]. No specific single gene has been 
identified in TACI-deficient relatives; however, genetic linkage 
studies demonstrate evidence for another causative gene on 
chromosome 4q22 or 16q23 [208]. Although the functional 
impairment of several TLR pathways in association with TACI 
has been studied, the effects have not been linked to specific 
genetic defects. 

BAFF-R (TNFRSF13C)

The BAFF-R gene is located on the long arm of 
chromosome 22 at 22q13.2. The homotrimeric protein encoded 
by this gene is a receptor belonging to the tumor necrosis factor 
receptor family (type III transmembrane protein) [209,210]. 
Together with the BCR, this receptor forms a complex receptor 
network (TACI/BCMA/BAFF-R) that is required for BAFF-
mediated proliferation and differentiation of transitional and 
mature B cells [143,211]. Activation of BAFF-R is followed 
by survival signals from BclXL and Mcl1 (via NF-kB, induced 
by NIK and TRAF 3) and mTOR (via AKT induced by PI3K) 
[212,213]. 

The report of 2 individuals with a homozygous deletion 
in the BAFF-R gene in 2009 showed that while this molecule 
is important for B-cell survival in humans, it is not absolutely 
necessary [134]. An immunology study of cases with 
this deletion revealed lymphopenia, late-onset antibody 
deficiency (except for serum IgA, unlike most CVID patients), 
involvement of long-term humoral memory (except for IgA+ 
memory), short-lived plasma cells (except for IgA secreting 
plasma cells from mucosal tissues), a relative increase in 
transitional B-cell counts, and reduced specific antibody 
responses, especially to polysaccharide antigens [214].

MSH5 (G7, MUTSH5, NG23)

The MSH5 gene is located on the short arm of chromosome 
6 at 21p21.33. MutS protein homolog 5, which is encoded by 
the MSH5 gene, is a member of the mutS family, which is 
involved in DNA mismatch repair and meiotic recombination 
processes [215]. This protein forms hetero-oligomers with 
another member of this family, mutS homolog 4. Four 
transcriptional variants formed by alternative splicing lead to 
the 3 different isoforms needed for Ig class-switch regulation, 
thus facilitating CSR between Sμ and Sα [216]. Indeed, DNA 
Holliday junctions between homologous DNA strands are 
resolved by means of a sliding clamp on DNA (MSH5 and 
MSH4) after meiotic chromosomal crossovers [217,218]. 

In 2007, Sekine et al [219] reported patients with 
nonsynonymous mutations in MSH5 presenting with different 
Ig deficiencies (CVID and SIgAD). Furthermore, individuals 
who are heterozygous for MSH5 nonsynonymous alleles are 
healthy with regard to changes in switch joint mutation rates. 
Therefore, MSH5 variants do not seem to play a major role in 
patients with primary immunodeficiency disease.

Conclusion

Approximately 30 genes causing B-cell developmental 
defects in humans have been described since 1952. Advances in 
DNA technology—in particular, next-generation sequencing—
are likely to result in the identification of many rare primary 
immunodeficiency diseases for which the causative genes 
remain unknown. Identification of a genetic basis for these 
diseases has a direct effect on the development of therapy, 
screening, detection of carriers, and family counseling. 
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